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Abstract—Radio frequency energy harvesting (RFEH) and ra-1

diative wireless power transfer (WPT) have attracted significant2

interest as methods of enabling battery-free sustainable wireless3

networks. Rectifying-antennas (rectennas) are the corner-stone4

of WPT and RFEH systems and critically affect the amount5

of DC power delivered to the load. The antenna element of6

the rectenna directly impacts the radiation to AC harvesting7

efficiency, which can vary the harvested power by orders of8

magnitude. In this paper, antenna designs employed in WPT and9

ambient RFEH applications are reviewed. Reported rectennas10

are categorized based on two main criteria: the antenna-rectifier11

impedance bandwidth and the antenna’s radiation properties.12

For each criteria, the Figure of Merit (FoM) is identified, for13

different applications, and reviewed comparatively.14

Index Terms—Antenna, Gain, Internet of Things, Microstrip15

antennas, Rectenna, RF Energy Harvesting, RF Power Transfer,16

Wearable Antenna17

I. INTRODUCTION18

Tesla proposed Wireless Power Transfer (WPT) in the 1900s19

as a mean of transferring thousands of horse-power [1]. The20

term “rectenna”, describing an antenna connected to a rectifier21

for harvesting Radio Frequency (RF) power, emerged in the22

1950s for space microwave power-beaming applications and23

for powering autonomous drones [2]. Omni-directional long-24

range WPT has been hindered by the physical characteristics25

of the propagation medium, air. Thus, commercial WPT has26

been mostly limited to near-field non-radiative power transfer27

for wireless consumer electronics charging, or short-range28

radiative Radio Frequency Identification (RFID) [3].29

As the power consumption of semiconductor devices and30

wireless sensor nodes continuously scales down, it became31

more feasible to power sensor nodes using ambient Radio32

Frequency Energy Harvesting (RFEH), or using distributed33

low-power omni-directional transmitters [4], [5]. An ultra-low34

power wirelessly-powered system is typically composed of the35

RF-harvesting front-end, DC power and storage management,36

and a low-power microprocessor and transceiver.37

Fig. 1 shows the architecture of a RFEH wireless node, and38

the commonly reported implementations of the RF-frontend.39

The end-to-end efficiency of a wirelessly-powered system, as40

well as, the architecture of a Simultanious Wireless Infor-41

mation and Power Transfer (SWIPT) network are dependent42

on the performance on individual components such as: the43

antenna, rectifier and power management circuit. Multiple44
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Fig. 1. System architecture of a RFEH wireless node, showing the power
sources and conversion stages, as well as commonly reported implementations.

TABLE I
POWER CONVERSION STAGES IN A RFEH SYSTEM

Conversion
stage Power source Focus element Literature

surveys

a-b Radiated RF
plane wave

Antenna radiation
characteristics This survey

b-c RF guided
wave

Antenna and
matching network

bandwidth

This survey,
2013 [4], 2018
[8], 2019 [10]

c-d Z-matched RF
wave

Rectifier topology
and technology

2013 [4], 2014
[6], 2016 [9],

2018 [8]

d Unregulated
DC power

Power
management

circuitry

2015 [7], 2016
[9]

e Regulated DC
power

Load, network
architecture

2013 [4], 2014
[5]

literature surveys have been carried out focusing on different 45

components of the system. Table I outlines the power conver- 46

sion stages, the key component for efficient power conversion, 47

and the relevant literature surveys focusing on each part. 48

Recent surveys focused on the power conversion techniques 49

[4], [6], [7], rectifier topologies [7], [8], or RFEH from a 50

networking perceptive [5], [9]. However, antenna design for 51

RFEH has not been considered as a key parameter in reported 52

reviews. To illustrate, while some surveys considered the 53

antenna’s bandwidth and efficiency from a holistic perspec- 54

tive, or specific antenna designs for niche applications such 55

as miniaturized or wearable antennas [8], [10], no detailed 56

analysis has been presented on the impact of certain antenna 57

parameters on the power reception and conversion efficiency. 58

This survey reviews antenna design techniques in a rectenna, 59

aiming to distinguish the RFEH- and WPT-specific antenna 60

design challenges from standard antenna design for communi- 61

cations. Antennas are compared from two perspectives, end- 62

to-end impedance matching, and radiation properties, in each 63
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Fig. 2. Rectenna topologies from a bandwidth and impedance matching perspective. (a): Single band rectenna with standard antenna. (b): Multi-band rectenna
(formed of multiple mutually coupled antennas) with one rectifier and matching network per band. (c): Broadband rectenna with multiple RF-ports and separate
matching networks for each band. (d): Broadband rectenna with a broadband antenna and a broadband matching network. (e): Single band rectenna using an
electrically small antenna directly matched to the rectifier. (f): Single band electrically large antenna with complex impedance to conjugate the rectifier. (g):
Broadband rectenna with complex impedance to conjugate the rectifier over a range of frequencies. The dashed line represents the measurement plane where
a S11 < −10dB bandwidth needs to be maintained.

context, the figure-of-merit (FoM) is identified and reviewed64

in state-of-art antennas. Section II defines the bandwidth65

and matching challenge in rectennas, and compares the re-66

ported approaches to fulfilling the bandwidth requirements67

of a rectenna. Section III reviews rectennas based on 50Ω68

antennas, with the matching network design in section IV.69

Section V reviews antenna-rectifier co-design and matching70

network elimination techniques. Finally, radiation properties71

of rectennas are reviewed in section VI.72

II. BANDWIDTH AND MATCHING:73

A NON-50Ω RF NETWORK74

The standardization of the characteristic impedance to the75

50Ω constant has been derived as a compromise between76

attenuation and power-handling in the early-days of microwave77

engineering [11]. In antennas, the impedance bandwidth, is78

defined as the range of frequencies where the reflected power79

is less than 10% (S11 < −10dB). This has been traditionally80

referenced to a 50Ω source, due to the fact that Low-Noise81

Amplifier (LNA), Power Amplifiers (PA) and detectors are82

conventionally designed with 50Ω input impedance matching.83

In rectennas, where the antenna’s output is fed directly84

into a rectifier, the non-linearity of the diode results in a85

highly-varying input impedance, with a dominant capacitive86

component [12], [13]. Assuming a 50Ω antenna is used, the87

main challenge lies in designing an additional RF matching-88

network to transform the input impedance to the rectifier’s89

at the frequencies of interest, and optimizing it for a certain90

power level. In this case, an end-to-end impedance band-91

width is required to ensure efficient RF to DC conversion.92

Thus, although an antenna could achieve a theoretical infinite93

or ultra-broad bandwidth using periodic elements or self-94

complimentary geometry, the rectenna’s bandwidth will be95

bottlenecked by the rectifier’s matching network.96

Multiple rectenna topologies have been presented to maxi-97

mize the power transfer between the antenna and the rectifier,98

through minimizing reflection, for single- and multi-band 99

harvesting or WPT. Figure 2 shows a summary of the reported 100

rectenna topologies categorized by their impedance matching 101

architectures. Examples of high performance rectennas, in 102

terms of end-to-end bandwidth (the FoM in this case), from 103

each category are shown in Table II. 104

While WPT from a dedicated feed and ambient RFEH are 105

distinct rectenna applications, from a bandwidth perspective, 106

achieving an end-to-end match between the antenna, the 107

rectifier and the load is fundamental to achieving high Power 108

Conversion Efficiency (PCE). Nevertheless, WPT rectennas 109

have been more focused on achieving a higher-Q match (lower 110

S11) to improve the single-tone PCE for certain power levels 111

(topologies a, e and f), hence, in single-tone WPT may not be 112

a FoM on its own. However, a broad bandwidth in single-tone 113

WPT improves the systems immunity to detuning, fabrication 114

imperfections and packaging parasitics. On the other hand, 115

RFEH rectennas have prioritized multi-band operation, due to 116

the often low Power Spectral Density (PSD) in single bands, 117

falling into topologies b-d and g. 118

III. 50Ω RECTENNAS 119

A. Single-Band 50Ω Antennas in Rectennas 120

The antenna design of 50Ω single band rectennas (topology 121

A) has been based mostly on standard antenna designs, such as 122

a Linearly-Polarized (LP) or a Circularly Polarized (CP) radia- 123

tor patch over a ground plane [14], [23]–[26], dipole antennas 124

[15], [27] and inverted-F monopoles [28]–[31]. Differential 125

single-band rectennas have been based on multiple antenna 126

elements configured as an array with DC combining [23], or 127

hybrid DC and RF combining of multiple patch elements [32]. 128

The effect of size reduction on the rectenna’s PCE has been 129

discussed in [33]. 130

As many of the presented 50Ω antennas are single band, 131

which meets the requirements of single-tone WPT, when 132

ambient multi-band RFEH is sought, multiple single-band 133
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TABLE II
COMPARISON OF RECTENNAS BASED ON THEIR IMPEDANCE MATCHING ARCHITECTURE

Lit. Topology Antenna Matching Frequency bands (GHz) Fractional Bandwidth (rect-
enna) FoM

2018 [14] A Narrow-Band Patch Single-band tapered line 2.45 (single) 4%
2013 [15] B Single-band tapes Single-band LC 0.5, 0.9, 1.8, 2.1 7%, 5%, 3%, 4-5% .
2018 [16] B and C Broadband slot, single band

slot
T/Pi networks (single
diode/band)

0.9, 2, 2.55 15%, 23.7%, 0.07%

2016 [13] C Frequency-independent Log-
periodic

Transmission-line match 0.55, 0.75, 0.9, 1.8, 2.3 9%*, 3%*, 2.3%, 2.2%, 2.2%

2013 [17] D Broadband Yagi-Uda array 8th-order LC (voltage dou-
bler/band)

1.8, 2.1 4%, 3%

2014 [18] E High-Q loop Weighted capacitor bank 0.868 6.9%
2016 [19] F High-Z Dipole N/A 0.55 21.1%
2017 [20] G High-Z Multi-band Dipole N/A 0.95, 1.85-2.4 2%, 30%*

*Bandwidth at S11 < −6dB

(a) (b) (c)

Inductor

Fig. 3. Multi-band UHF RFEH antennas: Triple band antenna with a lumped inductor and three radiator elements [21] (left), triple band slotted patch [16]
(center), and L-probe-fed dual-band patch [22] (right)

antennas have been combined to form multi-band rectennas134

with suppressed mutual coupling (topology B) [15], [28],135

with independent DC combining, after the power management136

circuit stage, making it entirely isolated from the RF harvesting137

and conversion circuit, requiring multiple power management138

circuits for each bands, which may decrease the efficiency139

of the boost converters [14], due to the low DC power from140

individual bands.141

B. Multi- and Broad-band RFEH Antennas142

Ambient RFEH is usually associated with multi-band har-143

vesting, thus, multiple methods of improving the bandwidth144

of standard antenna designs, or methods of forming dual145

or triple-band antenna arrays have been presented. In this146

section, bespoke antenna design for RFEH is reviewed, along147

with classic multi-band antennas with the potential of being148

employed as rectennas. In this context, the terms “multi-149

band” and “broadband” antennas are differentiated through150

the continuity of their bandwidth (S11 < −10dB) outside the151

bands of interest.152

Coplanar-Waveguide (CPW) monopoles, occupying smaller153

areas than their microstrip patch antenna counterpart at the154

same frequency, and producing a LP or a CP wave, are155

commonly used in broadband ambient rectennas [34]–[36].156

A reflector plane can be used for increased isolation, and157

improved gain resulting in a similar radiation pattern to patch158

antennas [36]. Slotted-CPW antennas were used to improve159

the impedance-bandwidth across multiple bands such as the160

1.8-2.7 GHz [35] or 1-3 GHz [34], [37].161

Slot rectennas, with aperture-proximity feed were designed162

to have increased bandwidth, as well as multiple proximity163

feeds for different rectifiers and matching networks targeting 164

different bands. [16], [38], [39]. Patch rectennas have also been 165

presented for dual-band operation using asymmetric corner 166

trimming resulting in dual-resonance [39]. Figure 3 shows 167

some of the reported multi-band antennas utilizing more than 168

one bandwidth improvement technique. 169

Conventional broadband antenna designs, including 170

frequency-independent antennas, have been used in ambient 171

RFEH as well as proposed for mmWave applications [40]. 172

Spiral antennas: a single element textile rectenna with a 173

single band matching network [41], a spiral array [42], and a 174

log-periodic antenna [13] have been presented. A triangular 175

spiral antenna has also been presented for harvesting energy 176

from 1-3 GHz [43]. A spiral antenna, with unfolded dipole 177

ends was presented for dual-band operation at 900 MHz and 178

the Ultra-Wide Band (UWB) (3-5 GHz) bands [44]. Ref. [45] 179

presents triple band operation using a multi-port rectenna 180

formed of an array of “pixel” elements, with DC combining, 181

with the “pixel” connections optimized through simulation to 182

tune the antenna, the “pixel” rectenna has been compared to 183

λ/4 monopoles . 184

IV. ANTENNA-RECTIFIER IMPEDANCE MATCHING 185

Matching the 50Ω antenna to a non-linear rectifier presents 186

a challenge due to the wide variation in its input impedance 187

with frequency. In topologies A and B (Fig. 2), a common 188

matching network topology is LC matching using lumped 189

components [46], [47], however, the fractional bandwidth is 190

typically lower than most communication bands [15]. Single 191

band stub matching has been commonly used at sub-6 GHz 192

microwave [14], [45], [48] as well as at milli-meter Wave 193
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(mmWave) bands [49], [50], usually paired with RF-short194

quarter-wave stubs at the fundamental frequency and the195

2nd harmonic. Therefore, the reported mmWave rectennas196

have inherently narrow band due to their PCE bandwidth197

being bottle-necked by the harmonic rejection at the outuput,198

which makes them specific to single-tone WPT applications199

in the 24 GHz license-free band. A comparison of lumped200

and distributed stub matching has been reported in order to201

numerically defining a maximum PCE of a rectenna [51].202

Rectennas in topologies C and D have been presented with203

more complex matching networks. Full-distributed-line match-204

ing networks have been presented for broadband operation205

[52], [53], with an RF-block-DC-short (DC-pass filter) at the206

output port [17] or a DC-block capacitor acting as a return207

path for the diode’s harmonics [22]. Rectifier components,208

such as capacitors in a voltage doubler, have been replaced in209

[52] by Printed Circuit Board (PCB) interdigitated capacitors,210

synthesized using commercial Electronics Design Automation211

(EDA) tools. Other reported broadband rectenna matching212

networks combine lumped components, for matching the lower213

frequencies, and distributed elements for creating RF shorts at214

the input [54]. Varying the load’s observed input impedance215

by the source, known as source-pull technique, has been216

utilized to design a broadband rectifier of 57% fractional217

bandwidth (1.25 to 2.25 GHz) with up to 10% higher PCE218

compared to a lumped or distributed line matching network219

[55]. While matching networks have commonly been designed220

to match the antenna across its full 50Ω bandwidth, in [41],221

[56] broadband antennas have been connected to narrow-band222

rectifiers.223

Hybrid lumped and distributed elements matching networks224

have been widely used in topologies C and D [13], [16],225

[22], [54], with series inductors and capacitors being the226

most commonly utilized lumped components [35]. These avoid227

complex structures such as interdigitated capacitors which228

require more accurate modeling and fabrication than standard229

microstrip lines.230

The input power to the rectifier affects the input impedance231

due to the diodes’ non-linearity. Therefore, rectennas have232

been designed to maximize the PCE for specific input power233

levels as well as load impedances [14], [45]. In [13], the234

matching network for the six band rectenna, following topol-235

ogy C, has been designed to match the rectifier at power236

levels from −30dBm to −10dBm and for load impedances237

from 1 to 100 kΩ, based on a complimentary conjugate238

resistance compression network. Moreover, as a result of the239

predominately capacitive high impedance of the diodes at240

sub-3 GHz frequencies, broadband rectennas with eliminated241

matching networks [20], [57], [58], or minimized simplified242

matching circuits [59], have been focused on PRF > 0dBm,243

and frequencies higher than 1 GHz [58]–[61] due to the lower244

capacitive impedance of the diode enabling a good match with245

the antenna, avoiding designing antennas with input reactance246

> 1000Ω.247

Adaptive, or reconfigurable, impedance matching has been248

presented in Complimentary Metal Oxide Semiconductor249

(CMOS) rectennas, where the matching network is formed of250

an on-chip capacitor bank and inductors [62]. Static CMOS251

matching networks have also been presented for standard 50Ω 252

antennas [62] as well as co-designed loop antennas [18], [63]. 253

In [64], a passive CMOS power-detector has been used to 254

control the switches directing the antenna’s output to differ- 255

ent rectifiers and matching networks based on the available 256

power. A design-time reconfigurable matching network has 257

been presented using lumped adjustable capacitors, tuned 258

by trimming while measuring the input impedance using a 259

Vector Network Analyser (VNA) [65]. On-board switches, 260

controlled by an external micro-controller, were utilized in 261

[66] to tune the on-PCB matching network capacitors at 900 262

MHz, demonstrating up to 10% performance improvement. In 263

a reconfigurable microstrip matching network, a Field-Effect 264

Transistor (FET) switch has been used to tune matching stubs 265

for dual-frequency operation [67]. 266

V. ANTENNA AND RECTIFIER CO-DESIGN 267

Rectennas following topologies E-G in figure 2 are charac- 268

terized by the antenna’s direct match to the rectifier, instead 269

of the 50Ω standard, requiring a minimized or eliminated- 270

matching circuit to deliver power to the rectifier. This section 271

reviews state-of-the-art rectennas employing non-50Ω anten- 272

nas, in addition to the advantages of matching-network-less 273

rectennas. 274

A. Electrically Small Antennas 275

LC resonant loop antennas have been widely used in ap- 276

plications where the system’s size is critical. At sub-1 GHz 277

frequencies, where the wave-length could result in a stan- 278

dard distributed-elements antenna occupying more space than 279

the system’s overall dimensions, applications such as fully- 280

integrated transceivers for body-implants particularly benefit 281

from using electrically small antennas for WPT [68]. 282

The highly inductive impedance, near resonance, of a small- 283

antenna can be utilized to directly conjugate the rectifier [69], 284

or with an additional on-chip capacitive matching network 285

[18], [70]. Electrically small antennas, down to ka = 0.645, 286

compared to ka = 5.91 in a normal dipole (ka = 2πr/λ0), 287

have been reported for sub-1 GHz WPT with LP and CP [69], 288

using Huygens dipole antennas [71]. 289

Multiple on-chip LC coils for radiative WPT have been 290

presented for microwave and sub-1 GHz fully-integrated 291

rectennas. In a fully-integrated 915 MHz CMOS rectenna, 292

a dipole antenna has been directly tuned to match a 3.4Ω 293

source using slot-termination to inductively load the antenna 294

[72]. CMOS rectennas with a Power Management Integrated 295

Circuit (PMIC) and a LNA were also presented with on- 296

chip loop antennas in a standard Silicon-on-Insulator (SoI) 297

chip [73]. A power-harvesting RFID 5.8 GHz transceiver with 298

an integrated coil-antenna has been presented for near-field 299

powering [74]. A dual-band antenna, for 7 GHz WPT and 1 300

GHz communication have been presented with on-chip tuning 301

capacitors [75]. 302

B. Rectifier Conjugate Antennas 303

As observed in [12], [13], the typical input impedance 304

of the diode is highly capacitive, and therefore requires 305
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Fig. 4. Rectennas directly matching the diode’s impedance: (a): 4×4 RFEH cross-dipole surface [58], (b): broadband inductive off-center fed dipole (OCFD)
[20], (d): all-polarization frequency-selectable off-set patch [57]

an inductive antenna to directly conjugate the impedance.306

High impedance, inductive antennas have been widely used307

in RFID tags due to the chips’ capacitive impedance [76].308

Thus, a similar approach can be utilized to design a RFEH309

antenna to directly conjugate the rectifier’s impedance. Dipole310

antennas, recently becoming a trend in complex-impedance311

RFID antennas [76], exhibit high impedance (resistance and312

reactance) near their resonant frequency. For example, [77]313

reports one of the earliest dipoles designed to match the314

resistance of the diode with a low-impedance load. However,315

only the resistance of the dipole is partially matched to the316

rectifier. A similar approach was reported when measuring the317

reception efficiency of polarization-independent arrays using318

a resistive load simulating the rectifier’s real-impedance [78],319

[79], achieving an impedance bandwidth from 6 to 20 GHz320

with respect to the purely-resistive dummy load in [79].321

Inductive dipoles [19], [20], [80] have been used to match322

the high capacitance of the rectifier at the band of interest. In a323

folded dipole antenna, the dual shorted lines (dipole-folds), act324

as an impedance transformer allowing the design of very high325

impedance antennas [19]. Alternatively, the offset feed, [20],326

[57], is responsible for increasing the inductive reactance as327

well as the real impedance. Combining multiple offset dipole328

elements with imbalanced bow-tie radial stubs resulted in the329

dual-broadband high impedance of the antenna [20]. A hybrid330

filter-matching network structure has been incorporated in the331

antenna in [81] and a cross dipole array [82] represent the332

highest frequency direct antenna-rectifier matching rectenna333

(Ku band). Cross-dipole RFEH surface arrays have been also334

reported with a real impedance match [79], [83] or a complex335

impedance match to the rectifier [58]. Figure 4 shows some336

of the reported rectifier conjugate antennas.337

Other antenna structures, such as dual-LP [51], [57] and338

CP patches [61] have also been used to directly conjugate339

the rectifier’s impedance, providing higher gain compared to340

omni-directional dipoles. The off-center feed in [57] produces341

additional narrow-band resonances allowing three bands of342

operation, as opposed to a standard single-band patch. This343

approach demonstrates relatively high efficiency independent344

of the load resistance between 700Ω and 4500Ω at PRF >345

0dBm, the operation power choice enables easier matching346

due to the reduced capacitive impedance of the diode. A347

TABLE III
KEY RADIATION PROPERTIES IN WPT AND RFEH RECTENNAS

Parameter Ambient RFEH Dedicated WPT
Gain Insignificant [45] FoM
Beam-width Wide (Omni-

directional)
FoM: Narrow, direc-
tional LoS

Polarization Arbitrary: Dual
LP/CP

Single-Pol, CP

rectenna array exhibiting only a real-impedance match has 348

been previously presented for a simpler antenna design [23]. 349

VI. RADIATION PROPERTIES IN RFEH AND WPT 350

The power received, PRX in the Friis model (1), by an 351

antenna, at distance d from the transmitter, is a direct function 352

of the receiver and the transmitter gain (GRX , GTX ). While 353

the gain, on its own is often regarded as a FoM, it does not 354

provide a complete picture on the anticipated reception of the 355

rectenna. 356

PRX(d) = PTXGTXGRX(
c

4πdf
)2 (1)

Antenna properties such as main-lobe directivity and polar- 357

ization directly impact the amount of power harvested from 358

an incident wave. Antenna radiation properties are the key 359

parameter where ambient RFEH and WPT can be distin- 360

guished. While in both applications the propagation medium 361

may be unknown, and its impact on the received wave needs 362

to be considered, knowledge of the transmitting antenna can 363

be exploited. Table III identifies the key parameters reviewed 364

in this section, and their applicability to RFEH and WPT, 365

distinguishing where how the FoM changes with application. 366

A. Directivity and Gain 367

In most RFEH and WPT applications, it is assumed that the 368

direction of the incident radiation is unknown by the harvester, 369

with no LoS path. In this effort, multiple antenna designs and 370

placements have been investigated to maximize the received 371

power from an unknown source, independent of main-lobe 372

alignment between the transmitter and the receiver. 373

Omni-directional rectennas have been widely presented in 374

ambient RFEH rectennas [15], [28]. In [15], [84], the PSD 375
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has been reported to vary based on the antenna’s orientation.376

Nevertheless, the variation in power has not been explained377

and hence it is impossible to identify if the change is due to the378

antenna’s radiation pattern, or due to a polarization mismatch.379

High gain directional antennas and arrays have been widely-380

reported for microwave WPT and beaming [85], in addition to381

RFEH applications; improving the harvesting efficiency from382

low RF power-densities or overcoming the propagation losses.383

Yagi-Uda rectenna arrays [17], [86], bow-tie array [87], a384

spiral array [42], tightly-coupled-Vivaldi array [88], a CPW385

CP array [89] and a wide-area patch array [23] were among the386

scalable rectenna implementations for maximizing the incident387

power density, where the area permits. Other approaches388

to improve the antenna’s gain included Substrate-Integrated389

Waveguide (SIW) techniques at microwave and mmWave390

bands, specific to WPT [90]–[92]. However, high-gain recten-391

nas are characterized by narrow-beam width, making receiving392

arbitrarily-directed waves inefficient. An investigation into393

the number of antenna elements and ports concluded that394

higher directivity does not correspond to higher harvested395

power in ambient RFEH assuming a 3D random incident field,396

this has been validated through field measurements in urban397

environment [28]. Based on [28], high gain arrays can be398

restricted to WPT applications.399

In the effort of porting the benefits of higher gain antennas400

to arbitrary RFEH, packaging or layout solutions have been401

utilized to overcome directionality problems. A double-patch-402

antenna wrist-band was presented to harvest power from both403

directions, for ambient Wi-Fi RFEH [14]. Ambient cellular404

RFEH antennas have also been designed as 3D boxes [93], and405

printed or adhered to the walls of an enclosure [48], [94], [95],406

for reducing the system’s area and enabling multi-direction407

harvesting. In [95], the cubic rectenna structure demonstrates408

higher energy-reception probability in ambient RFEH, due to409

the improved antenna diversity.410

Improvements to antenna designs to increase the beam-411

width included auxiliary parasitic patch elements to improve412

the WPT of a 2.4 GHz 4 × 1 array [96]. A 6 GHz Mesh-413

like antenna with multiple beaming-regions was also proposed414

demonstrating multiple beams for each port [97], [98]. Multi-415

port multi-rectifier surface rectennas and energy harvesting416

DC-
Combiner

E(LHCP)

E(RHCP)

E(VLP)
E(HLP)

V-LP LH-CP

ERX=E(LHCP)
+E(LP–3dB)

ERX= E(VLP) 
+E(CP–3dB)

ERX1= E(VLP) 
+E(CP–3dB)

DLP DCP

ERX1=E(LHCP)
+E(LP–3dB)

ERX2=E(RHCP)
+E(LP–3dB)

(c) (d)

(b)(a)

All-polarization 
incident wave

ERX2= E(HLP) 
+E(CP–3dB)

Fig. 6. Rectenna topologies based on antenna polarization, showing the total
received power by each antenna from an all-polarized incident wave. (a):
single LP antenna. (b): single CP. (c): Dual LP. (d): Dual CP.

antennas of omni-directional radiation patterns have been pre- 417

sented for multi-direction and multi-polarization RFEH [58], 418

[60], [78], [79]. Multi-rectifier with beamforming matrices 419

[99]–[101], and multi-port antenna arrays [98] have also been 420

presented for high-gain, multi-direction energy harvesting. A 421

comparison of RF-, Direct Current (DC)-, and hybrid power 422

combining from multiple antennas have been presented in 423

[102]. 424

In conclusion, although high-gain antennas are preferred to 425

improve the harvested power from low RF densities, highly- 426

directional receivers can be undesirable in applications with 427

unknown transmitter direction, such as ambient RFEH, or 428

WPT through an unknown propagation channel. In this effort, 429

multiple methods of multi-beaming were proposed for multi- 430

direction high gain WPT and RFEH. 431

B. Antenna Polarization for Maximum RFEH and WPT Effi- 432

ciency 433

Antenna polarization describes the motion of the field 434

vectors referenced to the direction of propagation from the 435

antenna. Polarization mismatch results in reduced transmis- 436

sion/reception between antennas even with main lobe direction 437

alignment. For instance, no power is received if a vertically LP 438

antenna is used for transmission, and a horizontally LP antenna 439

is used for reception. In this section, reported approaches to 440

maximize the wireless reception efficiency and avoid polariza- 441

tion mismatch losses are reviewed, in this regard, attention is 442

paid to the antenna’s ability to receive a wave (maintain higher 443

gain) both through its primary and secondary polarizations, 444

hence the FoM is the polarimetric gain, observed through the 445

antenna’s immunity to variation in the polarization angle of 446

incidence, which can be quantitatively compared through the 447

antenna’s primary and secondary gains (e.g. left- and right- 448

hand CP) being equally high. A summary of the proposed 449

rectennas’ architecture, in terms of polarization, is given in 450

figure 6 with State-of-Art (SoA) examples in table IV. 451

In cellular communications, where linear-polarization align- 452

ment between the base-station and the mobile phone is very 453
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(b) (c) (d)

(a)

Fig. 7. Polarization independent rectennas: A: dual-LP slot [47], b: dual-CP slot [37], c: dual-LP cross-dipole array [58], d: dual antennas for harvesting near
field H- (top) and E- (bottom) fields [105].

TABLE IV
COMPARISON OF RECTENNAS BASED ON THEIR POLARIZATION DIVERSITY

Lit. Polariza-
tion

Antenna
and Fre-
quency

Primary
Gain
(FoM)

Secondary
Gain
(FoM)

Bandwidth
(MHz)

2018
[14]

a: LP 2.45
GHz
Patch

Co-Pol
7.3 dBi

X-Pol
-15.2
dBi

50

2018
[103]

b: CP 5.8 GHz
Slot

6 dBc -14 dBc 1000

2018
[104]

c: DLP 2.4 GHz
Dual-
Slot

H-LP
7.45 dBi

V-LP
7.63 dBi

140

2015
[59]

d: DCP 2.4 GHz
Slot

7.9 dBc 7.9 dBc 700

unlikely, base-station antennas have been designed to be454

dual-polarized [106], [107], or multi-polarized [108]; avoid-455

ing polarization-mismatch losses when being received by a456

phone’s LP antenna, regardless of its angle. However, variation457

in a LP wave’s polarization due to multi-path effects remain458

an unresolved issue. Based on the assumption of multi-459

polarized mobile base-station, cellular RFEH antennas have460

been designed as LP antennas; as reported in most ambient461

RFEH literature [15], [28], [45], [54].462

Circularly Polarized (CP) rectennas have been mainly pro-463

posed for WPT due to their relative immunity to being464

mispositioned [42], [50], [109]. CP antennas enable reception465

of CP radiation with the same direction of rotation (left- or466

right-hand-side CP) without power losses, in addition to all467

LP waves with a 3 dB loss (50% power loss) regardless of the468

polarization angle. Thus, multiple WPT rectennas employed469

CP antennas to achieve rotation-independence with a CP470

transmitter. CP rectennas have been reported for the 900 MHz,471

2.4 [37], [110], and 5.8 GHz Industrial Scientific Medical472

(ISM)-bands [103], [109], [111] as well as for mmWave473

rectennas [50], [112]. CP antennas based on asymmetric474

geometry have been reported has been reported with wider-475

beam axial ratio to improve the immunity to mis-positioning476

in WPT applications [113] along with beam switching for477

improved angular coverage [101].478

In RFEH from arbitrarily polarized waves, polarization-479

diversity represents a potential solution to polarization mis-480

match losses [93]. Dual LP rectennas have been demonstrated481

using imbalanced slotted radiating elements [110], as well as482

slotted ground planes [114] in proximity fed antennas; rotated483

feed slots are used to achieve dual LP. Cross dipoles have 484

also been reported for dual-LP rectennas for RFEH [54] along 485

with dual-port patches [57]. It is expected that with dual- 486

LP, the antenna could receive a similar amount of power 487

regardless of the polarization angle. For instance, a stable 488

PCE has been achieved by a dual-LP patch while varying 489

the polarization orientation by 360◦ [115]. The dual-port/dual- 490

rectifier architecture has been widely reported in ambient 491

RFEH or random-polarization in LP rectennas WPT [35], [39], 492

[57], [116] and CP rectennas [24], [37], [42], [112]. 493

All-polarization, also-known-as multi-polarization, has been 494

presented for entirely overcoming polarization mismatch 495

losses, enabling harvesting CP and LP waves [59], [104], 496

[117], where the two dual polarization-orthogonal LP elements 497

effectively harvest all LP and CP waves. To illustrate, the 498

net vertical and horizontal voltages (VV and VH ), (2), remain 499

unchanged regardless of the polarization angle. A CP-wave 500

“E” follows in (3) and (4) where the power is harvested 501

twice (once by each element) resulting in full reception of 502

the CP component [104], overcoming the 3 dB polarization 503

mismatch loss. Finally, through DC-combining arbitrarily po- 504

larized incident waves can be harvested. The dual-port antenna 505

in [118] achieves left- and right-hand CP and LP using a dual- 506

mode SIW cavity. Orthogonal Dual-LP and DCP were both 507

reported to achieve similar net harvested power regardless of 508

the incident polarization after combining the power from both 509

ports [59], [104]. Figure 7 shows the geometry of reported 510

all-polarization rectennas. 511

PRX(ϕ = 90o) =
V 2
V

2Z0
= PRX(ϕ = 0o) =

V 2
H

2Z0
(2)

ELHCP =
1√
2

(Ex + jEy) (3)

ERHCP =
1√
2

(Ex − jEy) (4)

Polarization independent surfaces have been presented using 512

a cascaded cross-dipole rectenna array [58], meta-material sur- 513

face rectenna [78], and receiving meta-material antennas with 514

a dummy resistive-load [79], [83] or a microstrip-transformer 515

connected to a 50Ω RF power meter [119]. A frequency 516

selective surface has also been used to harvest arbitrarily 517

polarized waves [120]. Surface rectennas have been reported 518

at a variety of frequencies and 519
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Dual dipoles have also been utilized to achieve all-520

polarization operation at Ultra-high Frequency (UHF) (0.75521

- 0.95 GHz), receiving up to 13 dB higher RF power by using522

only 4-dipole elements compared to a single dipole rectenna523

[117]. Dual orthogonal slotting of the patch’s ground plane524

has been reported for the aperture feed of dual LP rectennas525

[59], [104], harmonics rejection has also been achieved due to526

the slotted feed in [59] omitting the need for an independent527

filter.528

Where all-polarization is achieved using dual antenna feeds,529

the rectifier has been used to combine the incident arbitrarily-530

polarized wave with the two ports connected as a signal and531

ground to the voltage doubler or shunt diode [104], [121]. An532

alternative topology has been presented in [104], [117] where533

every output is rectified independently with DC combining. A534

modified charge pump has been presented in [116] to mitigate535

the effect of imbalance between the vertically and horizontally536

LP incident power.537

To summarize, in WPT applications with a dedicated power538

source, CP is preferred due to the improved WPT efficiency539

regardless of antenna’s polarization angle. On the other hand,540

in multi-source harvesting, specifically from ambient sources,541

all-polarization antennas can achieve better overall reception542

and maximum portability; a multi-port/multi-rectifier architec-543

ture is required to combine the all-polarization power at RF544

or DC.545

VII. CONCLUSION546

In this paper, recent advances in antenna design for RF en-547

ergy harvesting and WPT are reviewed, presenting a standard548

categorization of RFEH and WPT antenna design, not pre-549

sented previously in literature. The three fundamental antenna550

requirements for achieving high RF to DC efficiency have been551

identified as:552

1) Antenna-rectifier impedance bandwidth at RFEH and553

WPT bands of interest.554

2) Main-lobe alignment between the transmitter and re-555

ceiver in WPT from a dedicated feed.556

3) Polarization match between the rectenna and the incident557

wave, regardless of the angle and position.558

Based on their impedance, rectennas have been classified559

into 50Ω and rectifier-conjugate, rectennas, with emphasis on560

the impedance matching across different frequency bands and561

loads, along with the efficiency of each matching approach.562

The radiation properties, from a directivity and polariza-563

tion perspective, have been reviewed in state-of-art rectennas.564

Methods of improving the gain through beamforming and565

packaging to overcome the narrow beamwidth were reviewed.566

Finally, CP rectennas for WPT were reviewed along with567

various implementations to achieve polarization-independent568

reception both for WPT and RFEH.569
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